During fieldwork in the mountains around Tinogasta in Catamarca, Argentina, the second author collected, in two rivulets with salt water, a moss that was tentatively identified as *Hygroamblystegium*. The specimens were later sent to the first author for identification. The material turned out to belong to the genus *Vittia* and is superficially similar to *V. pachyloena* (Mont.) Ochyra, a widespread species that occurs in the Andes, south-eastern Brazil, southernmost South America, South Georgia Islands, Falkland Islands, Juan Fernandez Islands, South Africa, and Kerguelen. However, it differs from the latter species in several details that cannot be due to phenotypic modifications. We therefore describe the new species *Vittia salina* for this aquatic moss. Van der Wijk, Margadant & Florschütz (1964) and Ochyra (1987a) misunderstood Müller (1889) when suggesting that *Hypnum sect. Limbella* Müll. Hal., the basis for *Limbella* (Müll. Hal.) Müll. Hal., is invalid (cf. Buck, 1998). Despite this misinterpretation, Ochyra’s (1987a) typification of *Limbella* is correct and the name *Vittia* must be used for the genus to which the species described here belongs.

**Vittia salina** L. Hedenäš & J. Muñoz sp. nov.

**Diagnosis**: *Vittiae pachyloenae* (Mont.) Ochyra affinis, sed costa tenuiore, (4–)5–6-stratosa, limbidio distali 1–2-stratoso, proximali 2–3(–4)-stratoso, cellulosis longioribus, et pseudoparaphyllis extissim anguste triangularesibus.

**Etymology**: The species is named *salina* after the salt water in the rivulets where it was found.


Sexual condition unknown. *Plants* medium-sized, dark green. *Stems* elongate, irregularly or somewhat irregularly pinnately branched; central strand present, narrow, cortex of 2(–3) layers of small and incrassate cells; pseudoparaphyllia foliöse, outer ones narrowly triangular, inner ones triangular or irregular in outline; paraphyllia absent; rhizoids inserted below leaf costa insertion, red-brown, slightly branched; smooth; axillary hairs 2–4 per axil, strictly axillary, with 1 upper cell, 8.5–13.5 μm wide, pule brownish, basal 1–2 cells quadrate or shortly rectangular, brownish. *Stem leaves* erect to erect-spreading, straight or slightly falcate, slightly twisted when dry, ovate, gradually acuminate, 1.0–2.1 mm long, 0.5–1.0 mm wide, concave; costa single, strong, sometimes slightly curved, pectent or shortly excurrent, smooth, 73.5–147.0 μm wide near base, in transverse section plano-convex or almost so, (4–)5–6-stratose and consisting of homogeneous cells, central cells slightly wider than epidermal ones; margin plane, entire throughout or sometimes very finely denticulate near apex, border present, above 5–7(–8) cells wide, of elongate-rectangular to linear cells, entirely or partly 2-stratose, otherwise unistratose, border near insertion broader, 10–15 cells wide, entirely 2-stratose or in portions 3–4-stratose; median laminal cells 19.0–71.5 x 6.5–11.0 μm, elongate-rectangular, elongate-ellipsoid, or shortly linear, unistratose, slightly incrassate, eporeus, smooth; basal cells wider than median laminal cells, slightly incrassate, eporeus; alar cells hardly differentiated, but basal limbidial cells along margin not inflated, rectangular or sometimes quadrate, not decurrent. *Branch leaves* smaller than stem leaves, proximal branch leaves triangular or broadly so, acute or shortly acuminate. (Sexual branches and sporophytes unknown).

*Vittia salina* differs from *V. pachyloena* in having considerably weaker costa and limbidium, longer median laminar cells, and narrowly triangular outer pseudoparaphyllia (cf. Fig. 1 and illustrations of *Vittia pachyloena* in Ochyra, 1987b). Moreover, *Vittia pachyloena* has 1–2-celled upper portions of the axillary hairs, and the leaf lamina is sometimes partly to entirely 2–4-stratose, whereas *V. salina* has one-celled upper portions of the axillary hairs and a unistratose lamina. The new species is also similar to the endemic Haitian *Limbella bartlettii* (H.A.Crum & Steere) W.R.Buck, but the latter species has broad and irregular pseudoparaphyllia, 1–3-celled upper portions of the axillary hairs, a more consistently 2(–3)-stratose limbidium, a slightly thicker, 5–7-stratose, costa, and longer median laminar cells (47.5–140.5 μm long, vs. 19.0–71.5 μm in *V. salina*). *Limbella bartlettii* should also be placed in *Vittia*, and the new combination will be made elsewhere (Hedenäs & Muñoz in Hedenäs, in press). Finally, the endemic
Figure 1. *Vittia salina* L. Hedéns & J. Muñoz (from holotype, MA). A, habit; B, stem leaves; C, transverse sections of leaf margin in mid-leaf; D, marginal leaf cells in mid-leaf; E, median laminal cells; F, basal leaf cells; G, transverse section of costa in mid-leaf; H, branch leaves; I, proximal branch leaves; J, pseudoparaphyllia; K, axillary hairs; L, partial transverse section of stem. Scales: a: A, b: B, H, I; c: C–G, K; d: J, L.
North American *Platylomella lescurei* (Sull.) Andrews has a limbidium that is 2-4-stratose in the upper leaf, whereas the margin is unistratose below. In *P. lescurei* the margin is also denticulate or finely so in large parts, the median laminal cells are smaller and shorter than in *V. salina* (6.5–38.0 × 4.0–8.5, vs. 19.0–71.5 × 6.5–11.0 µm), it has paraphyllia, and the axillary hairs have 3–6 upper cells.

*Vittia salina* was collected in two high altitude rivulets with fast running, saline water. It grew on rocks and banks, mostly well below the water surface at the time of collection. However, the collections were made in the rainy season and the areas covered by *V. salina* are probably above the water surface for most of the year, although always in the splash zone. The general area where *V. salina* was collected is characterized by a high altitude mountain climate, thus cold and very dry. The relative air humidity is also very low. The vegetation consists of an open steppe, dominated by tussocks of *Stipa chrysophylla* E. Desv. (‘coirón amargo’), *S. frigida* Phil. (‘vizcachera’), and *Adesmia* spp. Areas close to water courses, which are rare and almost all of them saline, are dominated by *Oxychloa andina* Phil. Despite the presence of running water, mosses are rare due to the high salt content of the water. In the holotype locality – Las Lozas, a streamlet of highly saline water – the only mosses besides *V. salina* were *Henneidiea heintii* (Hedw.) R.H.Zander and *Pohlia integrata* (Cardot) A.J.Shaw. These grew at tussock bases outside the splash zone and were common around streams above 3000 m a.s.l. In the other locality – Rumi Rayana, located at an altitude 700 m below the former – the stream is wider, still highly saline, and the aquatic species *Drepanocladius aduncus* (Hedw.) Warnst., *D. longifolius* (Mitt.) Paris, and *Bryum* sp. were found.

*Vittia pachyloma*, the other member of the genus occurring in southern South America, grows on rocks and boulders in brooks and rivers, in waterfalls, and sometimes also on wet rocks between 2600–4050 m in the Andes.

According to Ochyra (1987b) it generally grows in acidic habitats. The only thing known about *Limbellia hirtellii* is that it grows in running water. *Platylomella lescurei* grows in brooks, waterfalls, or on cliffs with dripping water, both in calcareous and acidic habitats (Crum, 1972).


We acknowledge National Geographic Society Grant no. 6362-98 in support of the second author’s fieldwork in Argentina in 1999.

**Taxonomic Additions and Changes:** *Vittia salina* L. Hedenäs & J. Muñoz, sp. nov.

**References**


LARS HEDENÄS, Swedish Museum of Natural History, Dept of Cryptogamic Botany, Box 50007, SE-104 05 Stockholm, Sweden. E-mail: lars.hedenas@rm.se

JESÚS MUÑOZ, Real Jardín Botánico, Plaza de Murillo 2, E-28014 Madrid, Spain. E-mail: jmunoz@ma-rjb.csic.es

Contribution to the bryoflora of Bolivia. I. Lowland mosses from two protected areas in the Department of Santa Cruz

The bryoflora of the Santa Cruz Department lowlands in eastern Bolivia is by far one of the least known in South America. Few botanists have collected mosses there in the past, and the situation has not changed much in recent times (Churchill, Griffin & Muñoz, 2000). Reasons for this may be that mosses are not an important component of the Neotropical dry lowland vegetation, either in terms of frequency or cover, and that no professional bryologist

© British Bryological Society 2002
DOI: 10.1179/037366802125001088
Received 18 December 2000. Revision accepted 4 May 2001